TMC

Thermomagnetic circuit breaker for mounting on a DIN rail

1 Description

Single or multi-position thermomagnetic circuit breaker with lever actuation, DIN rail mounting, trip-free mechanism that cannot be influenced, various characteristic curves, all-pole tripping.
The circuit breakers meet the requirements of circuit breaker standard EN 60934 (IEC 60934): S-type, TM.
Typical areas of application are telecommunications systems, power supply units, industrial switchgear and control systems, and rail vehicles.
The ideal characteristic curve shown here illustrates the curve of the thermomagnetic trigger characteristic. The timedelayed tripping protects the thermal part of the characteristic curve against overload. The magnetic part of the circuit breaker responds without delay to high overload and short-circuit currents and trips within a few milliseconds.

Figure 1 Ideal characteristic curve
(1) Thermal tripping range
(2) Magnetic tripping range

Make sure you always use the latest documentation. It can be downloaded at www.phoenixcontact.net/catalog.

This data sheet is valid for all products listed on the following page:

2 Ordering data

Thermomagnetic circuit breaker

Description	Type	Order No.	Pcs./Pkt.
Thermomagnetic circuit breaker, with universal foot for mounting on \qquad Sor \square ν	TMC... (see order key)		6
Accessories			
Description	Type	Order No.	Pcs./Pkt.
Insertion bridge, insulated, 80-pos. \qquad ($I_{\text {max }}: 50 \mathrm{~A}$) (For central supply $\mathrm{I}_{\mathrm{N}}: 80 \mathrm{~A}$)	EB 80-12	3009338	1
Zack marker strip, 10-section, for labeling the center of the terminal block	ZB 6	See CLIPLINE catalog	
UniCard sheets, for labeling terminal blocks using a Zack marker strip groove, 96 -section, can be labeled with BLUEMARK and CMS-P1-PLOTTER, color: white	UC-TM 5	0818108	10
Screwdriver	SZS 0,6X3,5	1205053	10

2.1 Order key

Ordering example

TMC with 1-pos. main current path, one N/O contact, medium-blow characteristic curve, and a nominal current of
2 A: TMC 1 M1 100 2A

3 Technical data

Nominal voltage	$\begin{aligned} & 250 \text { V AC (} 65 \text { V DC), } \\ & 3433 \text { V AC (} 50 / 60 \mathrm{~Hz} \text {) } \end{aligned}$
Nominal current range	0.2 A ... 16 A , see order key
Auxiliary circuit	240 V AC (65 V DC), 1 A
Service life	10,000 cycles with $1 \times I_{N}$, inductive
Ambient temperature	$-30^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ (T 60)
Insulation coordination (IEC 60664)	$2.5 \mathrm{kV} / 2$, increased insulation in the actuation area
Dielectric strength	
Actuation area	3000 V AC test voltage
Main to auxiliary circuit	3000 V AC test voltage
Position to position	1500 V AC test voltage
Insulation resistance	$>100 \mathrm{M} \Omega(500 \mathrm{~V}$ DC)

Connection capacity (continued)	Main contact	Auxiliary contact
Stripping length	12 mm	12 mm
Internal cylindrical gauge (IEC 60947-1)	A 3	A 1
Screw thread	M3	M3
Tightening torque	$0.6 \mathrm{Nm} \ldots 0.8 \mathrm{Nm}$	$0.6 \mathrm{Nm} \ldots 0.8 \mathrm{Nm}$
General data		
Width x length	$12.5 \mathrm{~mm} \times 83.5 \mathrm{~mm}$	
Height		
On NS 35/7.5... DIN rail	96 mm	
On NS 35/15... DIN rail	103.5 mm	
On NS 32... DIN rail	100.5 mm	
Insulation material	PA-F	
Inflammability class according to UL 94	Vo	
Degree of protection (IEC 60529)		
Actuation area	IP30	
Connection area	IP20	

Approvals		
Test center	Nominal voltage	Nominal current range
GL, VDE (EN 60934)	$3433 \mathrm{~V} \mathrm{AC}, 250 \mathrm{~V} \mathrm{AC} 65 V DC$,	$0.1 \mathrm{~A} \ldots 32 \mathrm{~A}$
UL, CSA	$277 \mathrm{~V} \mathrm{AC}, 277 / 480 \mathrm{~V} \mathrm{AC}$,	$0.1 \mathrm{~A} \ldots 32 \mathrm{~A}$

Figure 3 Installation diagram

Figure 2 Circuit diagrams

Figure 4 Dimensional drawing (dimensions in mm)

4

NOTE: Use a backup fuse in combination with the circuit breaker if the maximum switching current can be exceeded in the event of an error.

The table lists the maximum switching current, the relevant internal resistance, and the resulting backup fuse.
\(\left.$$
\begin{array}{|c|c|c|c|c|}\hline \begin{array}{c}\text { Nominal } \\
\text { current }\end{array} & \begin{array}{c}\text { NH } \\
\text { backup } \\
\text { fuse }\end{array} & \begin{array}{l}\text { Internal resistance } \\
\text { F1 (fast- } \\
\text { blow) } \\
\text { for DC }\end{array} & \begin{array}{l}\text { M1 } \\
\text { (medium- } \\
\text { blow) } \\
\text { capacity } \\
\text { according } \\
\text { to }\end{array}
$$

for DC/AC\end{array}\right\}\)| EN 60934 |
| :---: |$|$

5 Trigger characteristics

The thermomagnetic circuit breaker is available in 18 nominal current levels and in single and multi-pos. versions.
The version with the "medium-blow (M1)" trigger characteristic is suitable for AC and DC applications. The "fast-blow (F1)" characteristic version is suitable for DC applications.
The characteristic curves (see page 7) depend on the ambient temperatures. To avoid early or late disconnection, the circuit breaker nominal current must be multiplied by a factor.

Ambient temperature	Multiplication factor
$-30^{\circ} \mathrm{C}$	0.76
$-20^{\circ} \mathrm{C}$	0.79
$-10^{\circ} \mathrm{C}$	0.83
$0^{\circ} \mathrm{C}$	0.88
$10^{\circ} \mathrm{C}$	0.93
$20^{\circ} \mathrm{C}$	1
$30^{\circ} \mathrm{C}$	1.04
$40^{\circ} \mathrm{C}$	1.11
$50^{\circ} \mathrm{C}$	1.19
$60^{\circ} \mathrm{C}$	1.29

The characteristic curves (see page 7) are also valid for multi-position devices if all positions have an equal load. For multi-position devices and only 1-pos. overload, the thermal tripping limit changes for characteristic curves F1 and M1 to a maximum of $1.7 \times \mathrm{I}_{\mathrm{N}}$.
For DC, the magnetic operate values of the curves are around factor 1.3 higher.
Tripping is supported even with high-energy current peaks $<0.003 \mathrm{~s}$.

NOTE: When mounting several circuit breakers in rows, observe the mutual warming effect. When the circuit breakers are loaded simultaneously, a mutual warming effect occurs, which has the same effect as an increase in ambient temperature.

In this case, the nominal current can only be led to 80%. Alternatively, the load current can be increased by a multiplication factor and the circuit breaker dimensioned accordingly.

5.1 Medium-blow (M1): Nominal value 0.2 A ... 6 A

- Lower tripping limit: $1.05 \mathrm{xI}_{\mathrm{N}}$
- Upper tripping limit: $1.4 \mathrm{xI}_{\mathrm{N}}$

5.2 Medium-blow (M1): Nominal value 8 A ... 16 A

- Lower tripping limit: $1.05 \mathrm{xI}_{\mathrm{N}}$
- Upper tripping limit: $1.4 \mathrm{xI}_{\mathrm{N}}$

5.3 Fast-blow (F1): Nominal value 0.2 A ... 16 A

\square Only for DC applications.
i \qquad

- Lower tripping limit: $1.05 \times \mathrm{I}_{\mathrm{N}}$

